44,619 research outputs found

    Coherent optical binary polarisation shift keying heterodyne system in the free-space optical turbulence channel

    Get PDF
    In this paper, analytical and simulation results for the bit error rate (BER) performance and fading penalty of a coherent optical binary polarization shift keying (2PolSK) heterodyne system adopted for a free space optical (FSO) communication link modeled as the log-normal and the negative exponential atmospheric turbulence channels are presented. The conditional and unconditional BER expressions are derived, demonstrating the comprehensive similarity between the 2PolSK and the binary frequency shift keying (2FSK) schemes with regards to the system sensitivity. The power penalty due to the non-ideal polarization beam splitter (PBS) is also analyzed. The receiver sensitivity employing 2PolSK is compared with other modulation schemes in the presence of turbulence and the phase noise. The results show that 2PolSK offers improved signal-to-noise ratio (SNR) performance compared to the binary amplitude shift keying (2ASK)

    Effect of borehole stress concentration on compressional wave velocity measurements

    Get PDF
    Formation elastic properties near a borehole may be altered from their original state due to the stress concentration around the borehole. This could lead to a biased estimation of formation elastic properties measured from sonic logging data. To study the effect of stress concentration around a borehole on sonic logging, we first use an iterative approach, which combines a rock physics model and a finite-element method, to calculate the stress-dependent elastic properties of the rock around a borehole when it is subjected to an anisotropic stress loading. Then we use the anisotropic elastic model obtained from the first step and a finite-difference method to simulate the acoustic response in a borehole. Our numerical results are consistent with published laboratory measurements of the azimuthal velocity variations caused by borehole stress concentration. Both numerical and experimental results show that the variation of P-wave velocity versus azimuth has broad maxima and cusped minima, which is different from the presumed cosine behavior. This is caused by the preference of the wavefield to propagate through a higher velocity region

    Delay dependent stability criterion for time discrete linear systems

    Get PDF
    It is shown that every solution of the linear difference system with constant coefficients and delays tends to zero if a certain matrix derived from the coefficient matrix is a M-matrix and the diagonal delays satisfy delay dependent conditions

    Three-Dimensional Modelling and Simulation of the Ice Accretion Process on Aircraft Wings

    Get PDF
    © 2018 Chang S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.In this article, a new computational method for the three-dimensional (3D) ice accretion analysis on an aircraft wing is formulated and validated. The two-phase flow field is calculated based on Eulerian-Eulerian approach using standard dispersed turbulence model and second order upwind differencing with the aid of commercial software Fluent, and the corresponding local droplet collection efficiency, convective heat transfer coefficient, freezing fraction and surface temperature are obtained. The classical Messinger model is modified to be capable of describing 3D thermodynamic characteristics of ice accretion. Considering effects of runback water, which is along chordwise and spanwise direction, an extended Messinger method is employed for the prediction of the 3D ice accretion rates. Validation of the newly developed model is carried out through comparisons with available experimental ice shape and LEWICE codes over a GLC-305 wing under both rime and glaze icing conditions. Results show that good agreement is achieved between the current computational ice shapes and the compared results. Further calculations based on the proposed method over a M6 wing under different test conditions are numerically demonstrated.Peer reviewedFinal Published versio

    Magnetotransport properties of strained Ga0.95Mn0.05As epilayers close to the metal-insulator transition: Description using Aronov-Altshuler three-dimensional scaling theory

    Get PDF
    The magnitude of the anisotropic magnetoresistance (AMR) and the longitudinal resistance in compressively strained Ga0.95Mn0.05As epilayers were measured down to temperatures as low as 30 mK. Below temperatures of 3 K, the conductivity decreases [proportional]T^1/3 over 2 orders of magnitude in temperature. The conductivity can be well described within the framework of a three-dimensional scaling theory of Anderson's transition in the presence of spin scattering in semiconductors. It is shown that the samples are on the metallic side but very close to the metal-insulator transition. At lowest temperatures, a decrease in the AMR effect is observed, which is assigned to changes in the coupling between the remaining itinerant carriers and the local Mn 5/2-spin moments

    Temperature Effects on Threshold Counterion Concentration to Induce Aggregation of fd Virus

    Full text link
    We seek to determine the mechanism of like-charge attraction by measuring the temperature dependence of critical divalent counterion concentration (Cc\rm{C_{c}}) for the aggregation of fd viruses. We find that an increase in temperature causes Cc\rm{C_c} to decrease, primarily due to a decrease in the dielectric constant (Ï”\epsilon) of the solvent. At a constant Ï”\epsilon, Cc\rm{C_c} is found to increase as the temperature increases. The effects of TT and Ï”\epsilon on Cc\rm {C_{c}} can be combined to that of one parameter: Bjerrum length (lBl_{B}). Cc\rm{C_{c}} decreases exponentially as lBl_{B} increases, suggesting that entropic effect of counterions plays an important role at the onset of bundle formation.Comment: 12 pages, 3 figure

    Domain-wall dynamics at micropatterned constrictions in ferromagnetic (Ga,Mn)As epilayers

    Get PDF
    The influence of sub-”m geometric constrictions on 90° magnetic domain-wall nucleation and propagation in stripes of ferromagnetic (Ga0.95,Mn0.05)As was explored. Measurements of the magnetic switching behavior were performed during ramping of an external magnetic field at constant rate and at constant field in the time domain. Demagnetizing fields are found to play a crucial role in the switching behavior around the region of the constriction. Depending on the sample's initial magnetization the constriction can either assist domain-wall nucleation or hinder its propagation

    Large oscillating non-local voltage in multi-terminal single wall carbon nanotube devices

    Full text link
    We report on the observation of a non-local voltage in a ballistic one-dimensional conductor, realized by a single-wall carbon nanotube with four contacts. The contacts divide the tube into three quantum dots which we control by the back-gate voltage VgV_g. We measure a large \emph{oscillating} non-local voltage VnlV_{nl} as a function of VgV_g with zero mean. Though a classical resistor model can account for a non-local voltage including change of sign, it fails to describe the magnitude properly. The large amplitude of VnlV_{nl} is due to quantum interference effects and can be understood within the scattering-approach of electron transport
    • 

    corecore